Monday, 25 July 2016

BASICS OF DC MOTOR OPERATIONS

MAGNETIC FIELDS
There are two electrical elements of a DC motor, the field windings and the armature. The armature windings are made up of current carrying conductors that terminate at a commutator. DC voltage is applied to the armature windings through carbon brushes which ride on the commutator.
In small DC motors, permanent magnets can be used for the stator. However, in large motors used in industrial applications the stator is an electromagnet. When voltage is applied to stator windings an electromagnet with north and south poles is established. The resultant magnetic field is static (non-rotational). For simplicity of explanation, the stator will be represented by permanent magnets in the following illustrations.

A DC motor rotates as a result of two magnetic fields interacting with each other. The first field is the main field that exists in the stator windings. The second field exists in the armature. Whenever current flows through a conductor a magnetic field is generated around the conductor.

RIGHT HAND RULE
A relationship, known as the right-hand rule for motors, exists between the main field, the field around a conductor, and the direction the conductor tends to move.
If the thumb, index finger, and third finger are held at right angles to each other and placed as shown in the following illustration so that the index finger points in the direction of the main field flux and the third finger points in the direction of electron flow in the conductor, the thumb will indicate direction of conductor motion. As can be seen from the following illustration, conductors on the left side tend to be pushed up. Conductors on the right side tend to be pushed down. This results in a motor that is rotating in a clockwise direction. You will see later that the amount of force acting on the conductor to produce rotation is directly proportional to the field strength and the amount of current flowing in the conductor.

CEMF
Whenever a conductor cuts through lines of flux a voltage is induced in the conductor. In a DC motor the armature conductors cut through the lines of flux of the main field. The voltage induced into the armature conductors is always in opposition to the applied DC voltage. Since the voltage induced into the conductor is in opposition to the applied voltage it is known as CEMF (counter electromotive force). CEMF reduces the applied armature voltage.



The amount of induced CEMF depends on many factors such as the number of turns in the coils, flux density, and the speed which the flux lines are cut.

ARMATURE FIELD
An armature, as we have learned, is made up of many coils and conductors. The magnetic fields of these conductors combine to form a resultant armature field with a north and south pole. The north pole of the armature is attracted to the south pole of the main field. The south pole of the armature is attracted to the north pole of the main field. This attraction exerts a continuous torque on the armature. Even though the armature is continuously moving, the resultant field appears to be fixed. This is due to commutation, which will be discussed next.

COMMUTATION
In the following illustration of a DC motor only one armature conductor is shown. Half of the conductor has been shaded black, the other half white. The conductor is connected to two segments of the commutator.
In position 1 the black half of the conductor is in contact with the negative side of the DC applied voltage. Current flows away from the commutator on the black half of the conductor and returns to the positive side, flowing towards the commutator on the white half.



In position 2 the conductor has rotated 90°. At this position the conductor is lined up with the main field. This conductor is no longer cutting main field magnetic lines of flux; therefore, no voltage is being induced into the conductor. Only applied voltage is present. The conductor coil is short-circuited by the brush spanning the two adjacent commutator segments. This allows current to reverse as the black commutator segment makes contact with the positive side of the applied DC voltage and the white commutator segment makes contact with the negative side of the applied DC voltage.

As the conductor continues to rotate from position 2 to position 3 current flows away from the commutator in the white half and toward the commutator in the black half. Current has reversed direction in the conductor. This is known as commutation.






No comments:
Write comments